Exponents of diophantine approximation in dimension 2 for numbers of Sturmian type
نویسندگان
چکیده
منابع مشابه
Exponents of Diophantine Approximation and Sturmian Continued Fractions
– Let ξ be a real number and let n be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents w n (ξ) and w * n (ξ) defined by Mahler and Koksma. We calculate their six values when n = 2 and ξ is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we...
متن کاملExponents of Diophantine approximation in dimension two by Michel
Let Θ = (α, β) be a point in R, with 1, α, β linearly independent over Q. We attach to Θ a quadruple Ω(Θ) of exponents which measure the quality of approximation to Θ both by rational points and by rational lines. The two “uniform” components of Ω(Θ) are related by an equation, due to Jarńık, and the four exponents satisfy two inequalities which refine Khintchine’s transference principle. Conve...
متن کاملExponents of Inhomogeneous Diophantine Approximation
– In Diophantine Approximation, inhomogeneous problems are linked with homogeneous ones by means of the so-called Transference Theorems. We revisit this classical topic by introducing new exponents of Diophantine approximation. We prove that the exponent of approximation to a generic point in R n by a system of n linear forms is equal to the inverse of the uniform homogeneous exponent associate...
متن کاملDiophantine Exponents for Mildly Restricted Approximation
Abstract. We are studying the Diophantine exponent μn,l defined for integers 1 ≤ l < n and a vector α ∈ R by letting μn,l = sup{μ ≥ 0 : 0 < ‖x · α‖ < H(x) for infinitely many x ∈ Cn,l ∩ Zn}, where · is the scalar product and ‖ · ‖ denotes the distance to the nearest integer and Cn,l is the generalised cone consisting of all vectors with the height attained among the first l coordinates. We show...
متن کاملHausdorff dimension and Diophantine approximation
In the present survey paper, we explain how the theory of Hausdorff dimension and Hausdorff measure is used to answer certain questions in Diophantine approximation. The final section is devoted to a discussion around the Diophantine properties of the points lying in the middle third Cantor set.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2019
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-019-02280-2